- Bonnet, P. A., Sablayrallis, C. & Chapat, J. P. (1984). J. Chem. Res. (S), 2, 28.
- Bradac, J., Furkek, Z., Janezic, D., Molan, S., Smerkolj, I., Stanovnik, B., Tisler, M. & Vercek, B. (1977). J. Org. Chem. 42, 4197–4201.
- Enraf-Nonius (1983). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Gündüz, N., Gündüz, T., Hursthouse, M. B., Parkes, H. G., Shaw, L. S., Shaw, R. A. & Tüzün, M. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 899–902.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Katsunori, T., Minoru, I., Tetsuya, Y. & Toshio, G. (1992). Tetrahedron Lett. 33, 1303–1306.
- Lumma, W. C. (1980). European Patent Application 13 914.
- Lumma, W. C., Randall, W. C., Cresson, E. L., Huff, J. R., Hartman, R. D. & Lyon, T. F. (1983). J. Med. Chem. 26, 357– 363.
- Lumma, W. C. & Springer, J. P. (1981). J. Org. Chem. 46, 3735-3736. Martin, R. H. & Tarasiejska, Z. (1957). Bull. Soc. Chim. Belg. 66,
- 136-150.
- Parihar, D. S. (1993). Unpublished results.
- Sablayrallis, C., Bonnet, P. A., Cros, G., Chapat, J. P. & Bouchard, M. (1988). World Patent Application 88/04 298.
- Zaitsev, S. A., Glushkov, R. G., Mashkovskii, M. D. & Andreova, N. I. (1989). *Khim. Farm. Zh.* 23, 1201-1203.

Acta Cryst. (1995). C51, 484-487

Struktur der Molekularverbindung von 3,5-Dinitroindazol und Piperidin. 39. Azole†

A. GZELLA UND U. WRZECIONO

Lehrstuhl für Organische Chemie der Medizinischen Karol-Marcinkowski-Akademie Poznań, ul. Grunwalolzka 6, 60-780 Poznań, Polen

(Eingegangen am 23. Dezember 1993; angenommen am 1. August 1994)

Abstract

The title molecular complex, piperidinium indazolide, $2C_5H_{12}N^+.2C_7H_3N_4O_4^-$, was obtained by treatment of 3,5-dinitroindazole with piperidine. It consists of two ionized molecules of each component, connected by hydrogen bonds. The piperidine molecules form $H_2N^+<$ ammonium cations as a result of the incorporation of the pyrrolic H atoms of (1). The complex occupies a general position in the crystal lattice. The structure of the complex is determined on the basis of IR and ¹H-NMR spectra as well as X-ray analysis.

Kommentar

Die Einwirkung von cyclischen Aminen auf 3,5-Dinitroindazol (1) führt zu Molekularverbindungen, von denen diese von (1) und Morpholin (Gzella, Wrzeciono & Borowiak, 1989), Pyrrolidin (Gzella & Wrzeciono, 1990), Piperazin (Gzella & Wrzeciono, 1991*a*), Thiomorpholin (Gzella & Wrzeciono, 1991*b*) bzw. *N*-Methylpiperazin (Gzella, Wrzeciono & Łukaszewski, 1994) von uns bereits röntgenographisch untersucht worden sind. In dieser Mitteilung soll über die Struktur der Molekularverbindung von (1) und Piperidin berichtet werden [Verbindung (2)]. Diese Verbindung ist neben anderen, vorangehend beschriebenen Molekularverbindungen von (1) in Bezug auf potentielle radiosensibilisierende Eigenschaften interessant (Gzella, Wrzeciono & Łukaszewski, 1994).

Mehrere breite Baden im IR Spektrum von (2) im Bereich von 3000–2180 cm⁻¹ weisen auf die Ammoniumstruktur hin. Bei einem Vergleich der ¹H NMR Spektren von Piperidin und (2) läßt sich eine bemerkenswerte Tieffeldverschiebung des N-Protonensignals im Piperidin beobachten [Piperidin: δ = 1,62; (2): δ = 6,41 p.p.m.], was die Lokalisierung der positiven Ladung auf dem Piperidin-Stickstoff-Atom in (2) ermöglicht. Näheres über die Struktur von (2) läßt sich aufgrund röntgenographischer Untersuchungen aussagen.

Im asymmetrischen Teil der Elementarzelle befinden sich je zwei Moleküle von (1) und Piperidin. Ähnlich wie es bei den oben zitierten und bereits von uns beschriebenen Molekularverbindungen von (1) der Fall war, liegt auch in (2) (1) als Anion und Piperidin als Kation vor. Die Komponenten der Molekularverbindung sind durch Wasserstoffbrücken in ein Dimer gebunden (Fig. 1, Tabelle 3), das auf keinem Symmetrie-Element im Kristallgitter liegt.

An den Wasserstoffbrücken $N(16A) \cdots N(1B)$ und $N(16B) \cdots N(1A)$ sind die axialen H-Atome der Piperidin-Kationen und die Pyrrol-artigen N-Atome der 3,5-Dinitroindazol-Anionen beteiligt. An den zwei übrigen Wasserstoffbrücken $N(16A) \cdots N(2A)$ und $N(16B) \cdots$ N(2B) nehmen die äquatorialen H-Atome und Piperidinartigen N-Atome der entsprechenden Moleküle teil. Die durch die erwähnten Wasserstoffbrücken miteinander

^{† 38.} Mitteilung: Gzella & Wrzeciono (1995).

^{© 1995} International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 1. Molekülstruktur von (2); die Wasserstoffbrückenbindungen sind durch gestrichelte Linien gekennzeichnet. Wahrscheinlichkeitsmiveau der Elipsoidenzeichnungen 50%.

verbundenen Stickstoff-Atome N(1A), N(2A), N(16A), N(1B), N(2B) und N(16B) bilden einen gefalteten Ring ($\chi^2 = 31094,9$).

Die Bindungslängen und -winkel in den Molekülen Aund B von (1) sind mit den entsprechenden Parametern der von uns bisher untersuchten Molekularverbindungen von (1) vergleichbar (Gzella, Wrzeciono & Borowiak, 1989; Gzella & Wrzeciono, 1990, 1991a,b; Gzella, Wrzeciono & Łukaszewski, 1994).

Beide Indazol-Systeme sind leicht gefaltet (Molekül A: $\chi^2 = 288,3$; Molekül B: $\chi^2 = 177,4$). Die Winkel zwischen den Pyrazol- und Benzol-ringebenen betragen 1,6 (1)° im Indazol-Molekül A und 1,2 (1)° im Molekül B. Die größten Abweichungen von den Indazolebenen weisen die C(7A) [-0,024 (3) Å], C(7B) [-0,019 (3) Å] und N(1B) [0,019 (3) Å] Atome auf.

Beide Nitrogruppen in den Indazol-Molekülen A und B liegen annähernd in den Indazolebenen (Zweiwandwinkel von 2,0 bis $3,4^{\circ}$).

Die Bindungslängen N—C und C—C wie auch Bindungswinkel C—N—C, N—C—C und C—C— C in beiden unabhängigen Piperidinringen A und B entsprechen den Mittelwerten der Bindungslängen H_2N^+ — C_{sp^3} und C_{sp^3} — C_{sp^3} wie auch Bindungswinkeln C_{sp^3} —N— C_{sp^3} , N— C_{sp^3} — C_{sp^3} und C_{sp^3} — C_{sp^3} — C_{sp^3} von 14 bereits beschriebenen Piperidin-Kationen (Gzella, 1993).

Aus der Analyse der Torsionswinkeln geht hervor, daß beide Piperidinringe in der Sesselform vorliegen. Die Piperidinringebenen A und B bilden im Dimer von (2) einen Winkel von 3,6 (1), die Indazolebenen A und B von 8,7 (1)°. Die Winkel zwischen den Indazolebenen A und B und der Piperidinringebene A betragen 56,5 (1) und 53,0 (1)°. Die Piperidinringebene B dagegen bildet mit denselben Indazolebenen Winkel von 114,9 (1) und 118,4 (1)°. In den vorangehend beschriebenen Molekularverbindungen von (1) und Morpholin (Gzella, Wrzeciono & Borowiak, 1989), Thiomorpholin (Gzella & Wrzeciono, 1991b) und Piperazin (Gzella & Wrzeciono, 1991a) steht die Ebene von (1) annähernd senkrecht auf den Ringebenen der erwähnten Amine. Die gegenseitige räumliche Stellung der Komponenten im Dimer von (2) ist durch die Bildung der schon oben beschriebenen Wasserstoffbrücken bedingt. Zwischen den einzelnen Dimeren von (2) ließen sich van der Waals Wechselwirkungen nachweisen (Tabelle 3). Die Packung der Dimere von (2) in der Elementarzelle ist in Fig. 2 dargestellt.

Fig. 2. Kristallstruktur von (2); die Wasserstoffbrückenbindungen sind durch gestrichelte Linien gekennzeichnet.

Experimentelles

Verbindung (2), Schmp. 507–509 K, wurde durch die Einwirkung von Piperidin auf 3,5-Dinitroindazol (1) nach der Methode von Wrzeciono & Linkowska (1980) dargestellt; Ausbeute 85,9% IR (cm⁻¹): 3100–2180 (mehrere breite Banden; CH, CH₂, *NH₂), 1506, 1330 (NO₂) (KBr-preßling, Specord 71-IR, Fa. VEB Carl Zeiss, Jena). ¹H NMR: δ (p.p.m.) = 1,74–1,62 (*m*, 6H, CH₂CH₂CH₂), 3,11–3,01 (*m*, 4H, CH₂*NCH₂), 6,41 (*br*, *s*, 2H, *NH₂), 7,85 (*dd*, *J* = 0,9, 9,1 Hz, 1 H, 7-H), 8,00 (*dd*, *J* = 2,0, 9,1 Hz, 1H, 6-H), 8,85 (*dd*, *J* = 0,9, 2,1 Hz, 1H, 4-H) (in DMSO-d₆, interner Standard TMS, Tesla BS 587A Gerät, 80 MHz).

Kristalldaten

$2C_5H_{12}N^+.2C_7H_3N_4O_4^-$	Cu $K\alpha$ Strahlung
$M_r = 586,56$	$\lambda = 1,54178 \text{ Å}$
Orthorhombisch	Gitterparameter aus 25
Pna2 ₁	Reflexen
a = 20,076 (2) Å	$\theta = 12 - 25^{\circ}$
b = 6,831 (2) Å	$\mu = 0.820 \text{ mm}^{-1}$
c = 20,113 (1) Å	T = 293 (2) K
V = 2758,3 (9) Å ³	Nadeln
Z = 4	0,60 \times 0,15 \times 0,10 mm

$D_r = 1.412 \text{ Mg m}^{-3}$ Gelb			O(12B)	0,1217 (1)	-0,1712 ((4) 0,3787 (1)	0,064 (1)				
I	$D_m = 1.41$	$(1) Mg m^{-3}$	Her	kunft der Krist	alle:	N(13B)	0,0088 (1)	-0,2108 ((4) 0,6151 (1)	0,055 (1)	
		(-)8	K	ristallisation a	115	O(14B)	-0,0324 (1)	-0,2426 ((4) 0,5709 (1) 0.5749 (1)	0,063 (1)	
			P	ronanol/Hevan	40	O(15B)	-0,0065(1)	-0,2081 ($\begin{array}{cccc} (1) & 0,0/40 & (1) \\ (4) & 0.3767 & (1) \end{array}$	0,087(2)	
			r	iopanol/nexan		$\Gamma(10B)$ $\Gamma(17P)$	0,3772(1) 0.3961(2)	-0,0900 ($\begin{array}{ccc} (4) & 0,3707 (1) \\ (5) & 0.4124 (2) \end{array}$	0,040(1)	
						C(1/B)	0,3901(2) 0.4592(2)	-0.3639	(6) 0,3855 (2)	0.075(2)	
L	Datensam	mlung				C(10B)	0,4525 (2)	-0.4058	(7) 0.3117 (2)	0.086(3)	
F	Inrof-Nor	ine CAD-4	A	- 75°		C(20B)	0,4332 (2)	-0,2188	(8) 0,2756 (2)	0,079 (3)	
L	Differenter		し max と	0		C(21B)	0,3696 (2)	-0,1307	(7) 0,3034 (2)	0,068 (2)	
	Dillitaki	ometer	n =	$0 \rightarrow 23$							
ú	-2θ Abt	astung	<i>k</i> =	$0 \rightarrow 8$		Tabelle 2 Geometrische Parameter (\mathring{A}°)					
F	Absorption	nskorrektur:	<i>l</i> =	$0 \rightarrow 25$			Tabelle 2. C	seomenisc	ne l'unameter (A,)	
	keine		2 K	ontrollreflexe		N(1A)—N	I(2A)	1,356 (4)	N(1B) - N(2B)	1,352 (3)	
3	275 gem	essene Reflex	ke g	emessen nach	je 100	$N(1A) \rightarrow C$	(8A)	1,369 (4)	N(1B)— $C(8B)$	1,374 (3)	
2	2784 unat	ohängige Refl	exe	Reflexen	5	N(2A)-C	C(3A)	1,331 (4)	$N(2B) \rightarrow C(3B)$	1,334 (3)	
5	560 heat	achtete Refle	ve I	tensitätsschwa	nkung	$C(3A) \rightarrow C$	(9A)	1,415 (4)	$C(3B) \rightarrow C(9B)$	1,411 (4)	
4	EI > 10	$D_{4} = (D)$		~ 707.	uikung.	C(3A) = N	(10A) ((5A)	1,421 (4)	C(3B) = IN(10B) C(4B) = C(5B)	1,424(3) 1 382(4)	
,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	900(I) <u>}</u>		< 270		$C(4A) \rightarrow C$	(JA) (QA)	1,379 (4)	$C(4B) \longrightarrow C(9B)$	1,382 (4)	
ŀ	$K_{int} = nich$	nt verfugbar				$C(5A) \rightarrow C$	2(6A)	1,407 (4)	C(5B)— $C(6B)$	1,409 (4)	
						C(5A) N	(13A)	1.453 (4)	C(5B) - N(13B)	1,460 (4)	
I	/erfeineru	ing				C(6A)-C	(7A)	1,354 (5)	C(6B)—C(7B)	1,352 (4)	
x		and suff E	Ent	in letional complete		C(7A)-C	(8A)	1,413 (4)	C(7B)—C(8B)	1,408 (4)	
	veriemeru	ing aur r	EXU		$\operatorname{ur}: \mathbf{r}_{c} =$	C(8A)—C	C(9A)	1,405 (4)	C(8B)—C(9B)	1,414 (4)	
ŀ	x = 0,035	ł	F	$c(1-0,0001\chi F)$	$c/\sin\theta$	N(10A)-	O(11A)	1,236 (3)	N(10B)—O(11B)	1,234 (3)	
V	vR = 0.03	34	Ext	inktionskoeffiz	ient:	N(10A)—	O(12A)	1,218 (3)	N(10B)—O(12B)	1,221 (3)	
S	5 = 2,867	5	χ	r = 0.00269(7)		N(13A)—	O(14A)	1,222 (3)	N(13B) - O(14B)	1,234 (3)	
2	2560 Refl	exe	Ato	mformfaktorer	aus	N(13A)—	O(15A)	1,224 (4)	N(13B)—O(15B)	1,225 (4)	
4	500 Paran	neter	s ne	HFI Y76 (Shel	drick	N(16A)	C(17A)	1,483 (4)	N(16B) - C(17B)	1,481 (4)	
		Deremate		(310)	unick,	C(1/A)	C(18A)	1,490 (0)	C(1/B) = C(18B)	1,490 (0)	
		om Paramete		970)		C(10A) = C(10A)	C(19A)	1,510 (0)	C(10B) - C(19B)	1,519 (7)	
	verteine	ert	Ena	ntiomorhie-		C(204)	C(20A)	1,520 (7)	C(20B) - C(20B)	1,519 (7)	
V	$v = 1/\sigma^2$	<i>F</i>)	P	oleriteteparam	eter:	C(20/1)	N(16A)	1 495 (4)	C(20B) = C(21B) C(21B) = N(16B)	1,517 (0)	
($(\Delta/\sigma)_{\rm max}$	= 0,01	0	.0(3) (Flack, 1	1983)	C(21/1)		1,495 (4)		1,500 (1)	
2	$\Delta \rho_{max} = 0$	$0.18 \text{ e} \text{ Å}^{-3}$				N(2A)—N	N(1A) - C(8A)	107,3 (2)	N(2B) - N(1B) - C(8B)	107,3 (2)	
7	Δ_0 , $-$	$-0.17 = Å^{-3}$				N(1A)—F	$(2A) \rightarrow C(3A)$	108,3 (2)	N(1B) - N(2B) - C(3B)	108,4 (2)	
-	$\Delta \rho_{\rm min} - 2$	-0,17 C A				$N(2A) \rightarrow 0$	$C(3A) \rightarrow C(9A)$	112,0 (2)	$N(2B) \rightarrow C(3B) \rightarrow C(9B)$	112,2 (2)	
-	Tabelle	1 Atomkoo	rdinatan un	d isotrone ä	quivalente	C(3A) = C	$C(4A) \rightarrow C(9A)$	113,7(2) 123,7(3)	$C(3B) \rightarrow C(4B) \rightarrow C(9B)$	123.8 (2)	
	rabene	1. Alomkoo			quivaienie		$C(3A) \rightarrow C(3A)$	120,7(3)	C(5R) - C(5B) - C(0B)	120,1 (3)	
		Verschi	ebungsparar	neter (A ⁺)		C(6A)-C	(3A) - C(8A)	118.0 (3)	C(6B) - C(7B) - C(8B)	118.3 (3)	
						$N(1A) \rightarrow 0$	$C(8A) \rightarrow C(9A)$	111.0 (3)	N(1B) - C(8B) - C(9B)	110.8 (2)	
		$U_{\rm aq} =$	$(1/3) \Sigma_i \Sigma_j U_{ij} a$	$a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.		C(7A)-C	$C(8A) \rightarrow C(9A)$	120,6 (3)	C(7B) - C(8B) - C(9B)	120,7 (2)	
		*	v	7	11.	C(3A)-C	C(9A) - C(8A)	101,4 (2)	C(3B) - C(9B) - C(8B)	101,2 (2)	
P	N(1A)	0 4907 (1)	0 1368 (4)	04149(1)	0.050(1)	C(4A)-C	C(9A) - C(8A)	121,6 (2)	C(4B)— $C(9B)$ — $C(8B)$	121,2 (2)	
ĥ	N(2A)	0,4964 (1)	0,1360(4)	0,4820(1)	0.048(1)	C(3A)-N	N(10A)O(11A)	118,1 (2)	C(3B)-N(10B)-O(11B	3) 118,4 (2)	
ċ	C(3A)	0.5607(1)	0.1472 (4)	0.4976 (1)	0.043 (1)	C(3A)—N	N(10A) - O(12A)	118,2 (2)	C(3B)-N(10B)-O(12B	3) 117,8 (2)	
Ċ	C(4A)	0,6696 (1)	0,1607 (4)	0,4265 (1)	0,042 (1)	O(11A)—	N(10A)O(12A) 123,7 (2)	O(11B) - N(10B) - O(12)	2B) 123,7 (2)	
(C(5A)	0,6864 (1)	0,1664 (4)	0,3601 (1)	0,045 (1)	C(5A)—N	N(13A) - O(14A)	119,6 (2)	C(5B) - N(13B) - O(14B)	3) 119,4 (2)	
(C(6A)	0,6393 (2)	0,1685 (5)	0,3082 (1)	0,053 (2)	C(5A)N	N(13A) - O(15A)	118,2 (2)	C(5B) - N(13B) - O(15B)	B) 118,6 (3)	
(C(7A)	0,5733 (2)	0,1599 (5)	0,3219 (2)	0,053 (2)	O(14A)-	-N(13A)O(15A) 122,3 (3)	O(14B) - N(13B) - O(13B)	B) 122,1 (3)	
(C(8A)	0,5538 (1)	0,1489 (4)	0,3893 (1)	0,044 (1)	C(T/A)	-N(16A) - C(21A) - C(21A)	112,7(3)	C(1/B) = N(16B) = C(21)	(5) אווו (ס. (2) דיווו (ס	
(C(9A)	0,6016 (1)	0,1547 (4)	0,4403 (1)	0,039 (1)	$\Gamma(10A)$	C(18A) = C(18A)	110,2(3)	- N(100) - C(1/0) - C(100) -	(3) (3) (3) (3) (3) (3) (3) (3)	
1	N(10A)	0,5814 (1)	0,1525 (4)	0,5651 (1)	0,051 (1)	C(124)	C(19A) C(19A	1097(4)	C(18R) - C(10R) - C(19)	B) 1093 (4)	
(O(11A)	0,5379 (1)	0,1526 (4)	0,6086 (1)	0,0/7 (2)	C(194)	C(20A) - C(20A)) $110.4(4)$	C(19B) = C(20B) = C(20B)	(4) (3) (1) (3) $(4)(4)$	
,	$\mathcal{J}(12A)$	0,0409(1) 0.7567(1)	0,1330 (4)	0.3708 (1)	0,004 (1)	N(16A)	-C(21A) $-C(20A)$) 110.3 (3)	N(16B) - C(21B) - C(20B)	B) 109,7 (3)	
						/	-,	,		,	

Tabelle 3. Wasserstoff-Bindung Geometrie (Å, °)

$D-H\cdots A$	D–H	HA	$D \cdots A$	D — $H \cdot \cdot \cdot A$
N16A—H162A···N2A	0,93 (3)	2,20 (3)	2,996 (3)	144 (2)
N16A—H161A···N1B	1,00 (3)	1,89 (3)	2,876 (3)	168 (3)
N16B—H161B···N1A	0,83 (3)	2,07 (3)	2,885 (4)	169 (3)
N16 <i>B</i> —H162 <i>B</i> ···N2 <i>B</i>	1,08 (4)	1,98 (4)	2,974 (3)	151 (3)

Bei Datenreduktion wurde die Lorentz- und die Polarisationskorrektur durchgeführt. Die Struktur wurde mit direkten Methoden unter Verwendung des Programms MULTAN80 (Main et al., 1980) gelöst. Die Kohlenstoff-, Sauerstoff- und Stickstoff-Atome wurden anisotrop verfeinert, wobei die fullmatrix least-squares Methode und das Programm SHELX76 (Sheldrick, 1976) verwendet wurde. Die Wasserstoff-Atome wurden aus Differenz-Fourier-Synthese ermittelt und isotrop

N(13A)

O(14A)

O(15A)

N(16A)

C(17A)

C(18A)

C(19A)

C(20A)

C(21A)

N(1B)

N(2B)

C(3B)

C(4B)

C(5B)

C(6B)

C(7B)

C(8B)

C(9B)

N(10B)

O(11B)

0,7567 (1)

0,7981 (1)

0,7723 (1)

0,3840 (1)

0,3661 (2)

0,3062 (2)

0,3169 (3)

0,3342 (2)

0,3951 (2)

0,2702 (1)

0,2642 (1)

0,2007 (1)

0,0940 (1)

0,0782 (1)

0,1252 (2)

0,1899 (2)

0,2083 (1)

0,1608 (1)

0,1808 (1)

0,2237 (1)

0,1748 (4)

0,1873 (4)

0,1713 (6)

0,1540 (4)

0,3431 (5)

0,4292 (7)

0,4550 (7)

0,2583 (7)

0,1722 (7)

-0.0717(4)

-0,0837 (4)

-0,1228 (4)

-0,1726 (4)

-0,1752 (4)

-0,1483(5)

-0,1144 (5)

-0,1064 (4)

-0,1389(4)

-0,1442 (3)

-0,1311 (4)

0,3433 (1)

0,3877 (1)

0,2845 (1)

0,5798 (1)

0,5483 (2)

0,5814 (3)

0,6556 (3)

0,6864 (2)

0,6532 (2)

0,5390 (1)

0,4721 (1)

0,4576 (1)

0,5301 (1)

0,5970 (1)

0,6482 (1)

0,6332 (1)

0,5657 (1)

0,5150 (1)

0,3900 (1)

0,3463 (1)

0,055 (1)

0,065 (1)

0,096 (2)

0,044 (1)

0,061 (2)

0,088 (3)

0,095 (3)

0,077 (3)

0,068 (2)

0,049 (1)

0,045 (1)

0,040 (1)

0,041 (1)

0,044 (1)

0,053 (2)

0,051 (2)

0,042 (1)

0,038 (1)

0,048 (1)

0,072 (2)

verfeinert. Die Zeichnungen wurden anhand der Programme *PLUTO* (Motherwell & Clegg, 1978) und *ORTEPII* (Johnson, 1976) angefertigt.

Die Listen der Strukturfaktoren, anisotropen Verschiebungsparameter, H-Atom Koordinaten, und vollständigen geometrischen Daten sind bei der IUCr (Aktenzeichen: SH1093) hinterlegt. Kopien sind erhältlich durch: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Literatur

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gzella, A. (1993). Doktorarbeit, Medizinische Karol-Marcinkowski-Akademie Poznań, Polen, und dort zitierte Literatur.
- Gzella, A. & Wrzeciono, U. (1990). Acta Cryst. C46, 2107-2109.
- Gzella, A. & Wrzeciono, U. (1991a). Acta Cryst. C47, 599-602.
- Gzella, A. & Wrzeciono, U. (1991b). Acta Cryst. C47, 980-982.
- Gzella, A. & Wrzeciono, U. (1995). Acta Cryst. C51. Im Druck.
- Gzella, A., Wrzeciono, U. & Borowiak, T. (1989). Acta Cryst. C45, 644-647.
- Gzella, A., Wrzeciono, U. & Łukaszewski, Z. (1994). Pharmazie, 49, 319-322.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, VStA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. York, England, und Louvain, Belgien.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. Cambridge, England.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. Cambridge, England.
- Wrzeciono, U. & Linkowska, E. (1980). Pharmazie, 35, 593-596.

Acta Cryst. (1995). C51, 487-489

A 1:1 Adduct of 4,6-Dimethylpyrimidine-2(1*H*)-thione and Thiourea

SHYAMAL SETH

Department of Physics, X-ray Laboratory, Presidency College, College Street, Calcutta 700 073, West Bengal, India

H. Sur

Department of Physics, B. N. Mahavidyalaya, Itachuna, Hooghly 712 147, West Bengal, India

(Received 17 January 1994; accepted 8 August 1994)

Abstract

In the 1:1 molecular adduct of 4,6-dimethylpyrimidine-2(1H)-thione and thiourea, $C_6H_8N_2S.CH_4N_2S$, the pyrimidine ring is planar to within 0.037 (5) Å and is

protonated at the N atom rather than at the S atom. It is linked to two other thiourea molecules by $N \cdots H - N$ and $S \cdots H - N$ hydrogen bonds. Each thiourea molecule couples with two adjacent thiourea molecules through hydrogen bonds, thereby forming a polymeric chain extending along the *c* axis.

Comment

The 4,6-dimethylpyrimidine-2(1H)-thione (dtm) molecule displays bond lengths and angles close to expected values and is almost planar [maximum deviation: C(6) 0.037 (5) Å]. The pyrimidine ring itself is planar to within $\pm 0.012(3)$ Å and its geometry is similar to that found in both thiocytosine (Furberg & Jensen, 1970) and metal complexes (Seth, 1994; Cartwright, Langguth & Skapski, 1979; Cotton, Niswander & Sekutowski, 1979), with the exception of the C(1)—N(1)—C(2)angle $[124.0(2)^{\circ}]$. The ring is protonated at N(1) and seems to have significant contributions from both resonance structures (I) and (II) (see below). The S(1) atom is coplanar with the pyrimidine ring, as indicated by the torsion angle C(2)—N(1)—C(1)—S(1)of $179.4 (2)^{\circ}$. The C(1)—S(1) bond length [1.685 (3) Å] is at the lower end of the range reported for other thiosubstituted structures (Saenger & Suck, 1971) and may be compared with the value of 1.677 Å in thiouridine (Hawkinson, 1977).

The thiourea (tu) molecule, excluding the amido H atoms, is planar to within 0.004 (3) Å. It has normal configuration and dimensions (see, *e.g.*, Mak & Lau, 1978; Truter, 1967; Elcombe & Taylor, 1968). The dihedral angle between the dtm and tu molecular planes is $145.1 (1)^{\circ}$.

The dtm molecule is linked to two tu molecules by $N(2) \cdots H(42) - N(4)$, $N(1) - H(1) \cdots S(2)(x, y + 1, z)$ and $S(1) \cdots H(31) - N(3)$ hydrogen bonds (Fig. 2 and Table 2). The tu molecules are held together by pairs of equivalent $N(4) - H(41) \cdots S(2)(-x, -y-1, 1-z)$ and $N(3) - H(32) \cdots S(2)(1-x, -y-1, 2-z)$ interactions (Table 2). Thus, each tu molecule, besides being hydrogen bonded to two dtm molecules, couples with two adjacent centrosymmetrically related tu molecules forming a polymeric chain extending along the *c* axis. All four amido H atoms take part in hydrogen bonding, as was also observed in orthorhombic thiourea (Truter, 1967). The network of $N - H \cdots N$ and $N - H \cdots S$ hydrogen bonds connects the two molecular components of the adduct into corrugated layers elongated along the *c* axis. Thus,